
Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525. SAND2017-12231 C

Jennifer M. Frederick & Glenn E. Hammond
jmfrede@sandia.gov gehammo@sandia.gov

NS41B-0012

Maintaining Quality and Confidence in Open-Source,
Evolving Software: Lessons Learned with PFLOTRAN

Visit us at http://www.pflotran.org code repository
Documentation at http://www.documentation.pflotran.org pflotran
Questions? Email us at pflotran-users@googlegroups.com

Introduction

When software is constantly evolving, how can
we ensure software quality?

soft·ware ev·o·lu·tion
ˈsôf(t)wer/ /ˌevəˈlo͞oSH(ə)n/

Standard definition:

The gradual development of code, from a
simple to a more complex form, due to
repeated improvements and updates.

soft·ware qual·i·ty as·sur·ance
ˈsôf(t)wer/ ˈkwälədē/ əˈSHo͝orəns/

IEEE standard:

A planned and systematic pattern of all
actions necessary to provide adequate
confidence that software conforms to
established technical requirements.

Reasons for software evolution
New domain science:

New process models•
Increasingly mechanistic process •
models
New programming paradigms•
New numerical methods for solution•

New computational science:
Change in third• -party libraries
Switching operating systems or •
programming language
New or changing computer hardware•

Correctness •
(validation and
verification)
Reliability•
Maintainability•

Testability•
Availability•
Portability•
Survivability•
Efficiency•

Software quality includes

Open Source
Development

Software
Configuration
Management

Modular Object-
Oriented Design

Automated
Testing Suites

Online Version-
Controlled

Documentation

Benefits of Open Source Software
Encourages collaboration•

Development, testing, debugging can be shared•
Transparency exposes implementation details critical to scientific •
reproducibility, often excluded by scientific journals
More optimal use of funding•

Funding can be pooled across diverse sets of projects/budgets•
Rather than pay for licensing fees, pay for additional development•
Infinite benefit to those unfunded (graduate students)•

Community contributions can drive the code to evolve beyond original vision•

The original or modified source code may not be •
sold for profit
Third• -party software linked or wrapped around
PFLOTRAN may be proprietary

Online Documentation Automated Testing Suites

Software Configuration Management

www.pflotran.org

PFLOTRAN uses a documentation generator program •
called Sphinx (www.sphinx-doc.org)
The documentation consists of text files and images, •
written in restructured text, and organized with an index
The documentation is version controlled and the •
repository is hosted on Bitbucket.com

When/if you roll back the code, you can roll back •
the documentation too!

Sphinx creates html files as well as • LaTeX -> pdf
We host the html files on our documentation website •
http://documentation.pflotran.org
The pdf User• ’s Guide and Theory Manual can be
downloaded or printed, and never falls behind the online
documentation

http://www.sphinx-docs.org

PFLOTRAN employs the • Git distributed source control
management tool for configuration management.
Git• logs all changes to a code repository

Version control•
Code can be rolled back if a mistake was made•

Git• allows developers to:
Clone the base repository•
Modify and test code in a development branch•
Merge changes back into base repository•
Pinpoint problematic • changesets (snapshots of
code versions)

Hosted on Bitbucket.com•
Pull requests make code
review a systematic part of
version control.

Each change to
the code has a
commit message.

As open source development fosters a growing community •
of developers, the code should not break!
Automated testing ensures the code works properly, but it •
is dependent on having good code coverage.
Unit tests•

Individual routines are executed in isolation.•
Results are compared with a gold standard to • within a
tolerance.

Regression tests • – focus on changes in simulation results
Full simulations are executed.•
Simulations results are sampled and compared to a gold •
standard to within a tolerance.

Why a tolerance? • Accommodates small variations in
software and hardware (e.g., Linux vs Mac, compilers)

Verification tests•
Full simulations are executed, for which there is a •
known solution.
Simulation results are sampled and compared to an •
analytical solution within a tolerance.

if (abs(test_value – gold_standard) > tolerance) report_error()

A successful run of the unit and regression tests.

An unsuccessful run of the unit and regression tests.
Note several failing unit and regression tests!
Somebody broke the code!

Example regression test failure:
Perturb the critical pressure for the

water equation of state by 10
billionths of a percent, and see
what happens. . .

diff -r f9f01bbf557a src/pflotran/eos_water.F90
--- a/src/pflotran/eos_water.F90
+++ b/src/pflotran/eos_water.F90
@@ -893,6 +893,7 @@

tc1 = H2O_CRITICAL_TEMPERATURE ! K
pc1 = H2O_CRITICAL_PRESSURE ! Pa

+ pc1 = pc1 + 1.d-10*H2O_CRITICAL_PRESSURE
vc1 = 0.00317d0 ! m^3/kg
utc1 = one/tc1 ! 1/C
upc1 = one/pc1 ! 1/Pa

p = L + y/L + z/L
south face

p = x/L + z/L
top face

p = x/L + y/L
east face

𝜕𝜕2𝑝𝑝
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝑝𝑝
𝜕𝜕𝑦𝑦2

+ 𝜕𝜕2𝑝𝑝
𝜕𝜕𝑧𝑧2

=0

governing equation

𝑝𝑝 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 𝑝𝑝0
𝑥𝑥
𝐿𝐿

+
𝑦𝑦
𝐿𝐿

+
𝑧𝑧
𝐿𝐿

analytical solution

Verification Problem Set-up:

• 3D domain (10x10x10 cells)
Dirichlet• pressure boundary
conditions
Solve for steady state •
pressure/flow fields

Example
Verification
Test in Suite

	Slide Number 1

