Radon and the PFLOTRAN Ingestion Dose Model

Paul E. Mariner, Jennifer M. Frederick, and Glenn E. Hammond pmarine@sandia.gov, Sandia National Laboratories, Albuquerque, NM, USA

Problem

- Radon-222 (²²²Rn) and other short-lived isotopes are typically excluded from groundwater flow models.
 - However, they can be highly mobile relative to their parents (e.g., ²²²Rn).
- How do we account for dose from short-lived isotopes?

²²⁶Ra

0.010 a

²²²Rn

218Po

1600 a

- Must account for individual contributions.
- Must account for emanation and relative adsorption.

Conceptual Model

Figure 2. ²²⁶Ra and its short-lived descendants.

Simulate

- Assume 1 Bq m⁻³ of ²²⁶Ra in well water, consumed at 2 L per day.
- Use PFLOTRAN's biosphere process model with GDSA Framework
 [3] to calculate dose rates for ²²⁶Ra and descendants.

Table 1. Model inputs/outputs for u	unsupported descendants of ²²⁶ Ra.
-------------------------------------	---

		Adsorption			Calculated	Calculated
		Enhancement	Emanation	Dose Coeff.	Aq. Conc.	Dose Rate
		Factor	Factor	dcf	<i>C</i> _{<i>w</i>,<i>u</i>}	$H_{E,u}$
	lsotope	ϵ_u	φ_u	(Sv Bq ⁻¹)	(Bq m ⁻³)	(Sv a⁻¹)
	²²⁶ Ra	NAa	NA ^a	2.8E-07 ^e	1.00 ^g	2.0E-07
	²²² Rn	5000 ^b	0.40 ^c	3.5E-09 ^f	2000	5.1E-06
	²¹⁴ Pb	1.85 ^b	1.0 ^d	1.4E-10 ^e	1.85	1.9E-10
	²¹⁴ Bi	5.0 ^b	1.0 ^d	1.1E-10 ^e	5.0	4.0E-10
a = not applicable; b = [4]; c = [2]; d = assumed; e = [5]; f = [6]; g = input						

Figure 1. Schematic illustration of affinity of ²²²Rn for the aqueous phase, relative to ²²⁶Ra. This results in enhanced well water concentrations of ²²²Rn relative to ²²⁶Ra and an increased dose rate.

Equations

water (Bq/m^3)

Adsorption

enhancement factor

Dose rate (Sv a⁻¹) [1]
 for supported
 isotope i

rate (m^3/a)

 $C_{w,u} = C_{w,i} \epsilon_u \varphi_u$

Figure 3. Effects of adsorption enhancement and emanation factor on dose rates calculated for each isotope. Hollow bars ignore ϵ_u and φ_u .

Conclusions

- Aq. Conc. (Bq m⁻³) [2]
 for unsupported
 isotope u
 (e.g., ²²²Rn)
- Adsorption enhancement factor [2]

 $\epsilon_u = Rf_i/Rf_u$ Retardation / Retardation factor of i factor of u

- Net adsorption enhancement in this example causes ingestion dose from ²²²Rn to increase by a factor of 2000.
- Open-source PFLOTRAN and GDSA Framework (pa.sandia.gov) [3] include this model.

- 1. IAEA (2003). "Reference Biospheres" for Solid Radioactive Waste Disposal. International Atomic Energy Agency, Vienna, Austria.
- 2. Olszewska-Wasiolek, M.A. and B.W. Arnold (2011). Radioactive Disequilibria in the Saturated Zone Transport Model and the Biosphere Model for the Yucca Mountain Repository The Case of Radon-222. International High-Level Radioactive Waste Management Conference 2011. Albuquerque, New Mexico.
- 3. SNL (2017). GDSA Framework: A Geologic Disposal Safety Assessment Modeling Capability. Open Source. Available from: pa.sandia.gov.
- 4. Sheppard, M.I. and D.H. Thibault (1990). Default soil solid/liquid partition coefficients, Kds, for four major soil types: a compendium. Health Physics 59(4): p. 471-482.
- 5. ICRP (2012). Compendium of Dose Coefficients based on ICRP Publication 60. ICRP Publication 119. Ann. ICRP 41(Suppl.).
- 6. UNSCEAR (2000). Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation, UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes, United Nations: New York, New York.

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

coeff. of i (Sv/Bq)

Emanation factor

SAND2017-9170 C